Gene module based regulator inference identifying miR-139 as a tumor suppressor in colorectal cancer.
نویسندگان
چکیده
Colorectal cancer is one of the most commonly diagnosed cancer types worldwide. Identification of the key regulators of the altered biological networks is crucial for understanding the complex molecular mechanisms of colorectal cancer. We proposed a gene module based approach to infer key miRNAs regulating the major gene network alterations in cancer tissues. By integrating gene differential expression and co-expression information with a protein-protein interaction network, the differential gene expression modules, which captured the major gene network changes, were identified for colorectal cancer. Then, several key miRNAs, which extensively regulate the gene modules, were inferred by analyzing their target gene enrichment in the modules. Among the inferred candidates, three miRNAs, miR-101, miR-124 and miR-139, are frequently down-regulated in colorectal cancers. The following computational and experimental analyses demonstrate that miR-139 can inhibit cell proliferation and cell cycle G1/S transition. A known oncogene ETS1, a key transcription factor in the gene module, was experimentally verified as a novel target of miR-139. miR-139 was found to be significantly down-regulated in early pathological cancer stages and its expression remained at very low levels in advanced stages. These results indicate that miR-139, inferred by the gene module based approach, should be a key tumor suppressor in early cancer development.
منابع مشابه
Altered expression of Lnc-OC1 and SIRT1 genes in colorectal cancer tissue
Backgrounds: SIRT1 plays an important role in many physiological processes, including metabolism, neuronal protection, senecence and inflammatory, by staging histones and multiple transcription factors. However, the complex mechanisms of SIRT1 signaling in tumors are not yet fully understood, as it acts as both an oncogen and a tumor suppressor. On the other hand, it has been shown that the Lnc...
متن کاملPromoter hypermethylation of KLOTHO; an anti-senescence related gene in colorectal cancer patients of Kashmir valley
Hypermethylation of CpG islands located in the promoter regions of genes is a major event in the development of the majority of cancer types, due to the subsequent aberrant silencing of important tumor suppressor genes. KLOTHO; a novel gene associated primarily with suppressing senescence has been shown to contribute to tumorigenesis as a result of its impaired function. Recently the relevance ...
متن کاملMutation Analysis of TP53 Tumor Suppressor Gene in Colorectal Cancer in Patients from Iran (Kerman Province)
Objective(s) P53 is an important tumor suppressor, which is mutated in later stages of many cancers and leads to resistance to chemotherapy. The aim of this study was to reveal mutations of TP53 in colorectal cancer in Kerman province. Materials and Methods A total of Forty-three colon cancer specimens as paraffin block or fresh tissues, which passed stage IIIA, were selected. Three exons 5,...
متن کاملمتیلاسیون اگزون 1، ژن CDKN2A در نمونههای بلوک پارافینه سرطان روده بزرگ
Background: The molecular studies indicate some of the genes in the promoter region itself, will undergo methylation. Methylation of CpG islands in the promoter region of that cause silence or reduced expression of genes involved in cell growth pathways, which are colorectal cancer causing agents. Detection of methylation status can be used as a marker for cancer diagnosis and prediction of dis...
متن کاملHistone methylation-mediated silencing of miR-139 enhances invasion of non-small-cell lung cancer
MicroRNA expression is frequently altered in human cancers, and some microRNAs act as oncogenes or tumor suppressors. MiR-139-5p (denoted thereafter as miR-139) has recently been reported to function as a tumor suppressor in several types of human cancer (hepatocellular carcinoma, colorectal cancer, breast cancer, and gastric cancer), but its function in non-small-cell lung cancer (NSCLC) and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular bioSystems
دوره 10 12 شماره
صفحات -
تاریخ انتشار 2014